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I. INTRODUCTION 

Up to sixteen years ago properties of electrolytic solutions were studied 
by means of conductance data obtained under low potentials and audio 

1 The symbols used in this article are defined as follows: 
Xs=o = ordinary specific conductance at exceedingly low fields, 

X = specific conductance at any field, 
As=o — A0 = ordinary equivalent conductance at exceedingly low fields at a con­

centration c, 
A = equivalent conductance at any field, 

A- = equivalent conductance for an infinitely dilute solution at exceedingly low 
fields, 

AE=X = limiting equivalent conductance extrapolated for infinite field, 
E = electrical field in E.S.XJ., 

E' = electrical field in volts per centimeter, 
X = i-component of the field in E.S.U., 
V = average potential of the oscillating discharge, 

VF = discharge potential of the spark gap, 
RE=O — resistance in ohms at exceedingly low fields, 

R = resistance in ohms at any field, 
C = capacity, 
L = inductance, 
D = dielectric constant, 
K = dissociation equilibrium constant of the ion pairs, 
c' = molar concentration, moles of solute per liter of solution, 
c = equivalent concentration, equivalent weight of solute per liter of solution, 

m = molal concentration, moles of solute per 1000 g. of solvent, 
Zi — valence of the i ion, 
© = time of relaxation of the ion atmosphere, 
8 = decrement (angle), 
if = angle, 
K = characteristic quantity in the Debye-Huckel theory, 
if/ — electrical potential around an ion, 
Pi = 1/ai = frictional resistance of the i ion, 
v = frequency, 
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frequencies. I t was never suspected that electrolytes would exhibit in­
teresting and informative properties under other conditions, and it was 
not until 1927 that Max Wien discovered that the conductivity of an 
electrolytic solution increases with increasing field strength when very 
high electrical fields are applied; in other words, that under such extreme 
conditions Ohm's law is no longer valid.3 

This capital discovery, which is of primary importance for the further 
development of the theory of electrolytic solutions, was the final result of 
an investigation originally undertaken for the purpose of determining the 
validity of Stokes' law at high ion velocities. Lenard (16) showed on 
theoretical grounds that the mobility of an ion should decrease slightly at 
high speeds. The corresponding decrease of conductivity to be expected 
for the hydrogen ion, according to theory, was of the order of 0.5 per 
cent in a field of 1 megavolt per centimeter (106 volts per centimeter). 
The velocity of the hydrogen ion in this field is about 30 meters per 
second, as compared to about 12 cm. per hour in a field of 1 volt per centi­
meter. The experimental proof of this prediction presented many diffi­
culties, mainly owing to electrolysis and to the tremendous amount of heat 
developed in the solution during the time that the resistance is measured. 
The single-spark method of Wien made such measurements possible; with 
it Wien showed in 1924 that the conductivity of aqueous solutions of 
sodium chloride, potassium hydrogen sulfate, and sulfuric acid is inde­
pendent of field strength within an experimental accuracy of 1 per cent 
for fields up to 0.5 megavolt per centimeter. This result thus furnished 
qualitative proof of Lenard's prediction. Later Wien and Malsch, in 
extending Wien's work to a larger variety of salts and solvents, obtained 
results that indicated that the temperature coefficient of conductance was 
somehow influenced by the length of the time interval during which the 
field was applied (19). 

These peculiar results led to a more detailed and accurate study of the 
phenomenon in question. First, Wien and Malsch developed the baretter 
method as a new tool which enabled them to measure resistance changes 
with an accuracy of 1 or 2 parts in 10,000 with fields up to 0.5 megavolt 
per centimeter (see part II A). Using this method, Wien showed in 1927 
that with high fields the conductance of an electrolytic solution always in­
creases, and that this effect is not, as was previously supposed, due to an 

T = impulse duration, 
to = frequency in 2 ir sec, 
ijo = viscosity of the solvent, 
a = degree of dissociation (a parameter in Wilson's theory). 

2 University of Jena. Anthony Fellow in Chemistry at Brown University, 
1937-38. 

3 This fact has been known for solid bodies for some time (26). 
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anomalous temperature coefficient of conductance, but is a general property 
of electrolytic solutions, dependent upon the concentration and valency 
of the ions and the specific character of solute and solvent. He was 
further able to show that for extremely high fields the conductance tends 
toward a constant limiting value which corresponds nearly, but perhaps 
not exactly, to that of the equivalent conductivity at infinite dilution as 
ordinarily measured at low fields. This phenomenon is now known as the 
first or normal Wien effect (see part II B). 

In these earlier investigations only strong electrolytes were studied. 
When the work was extended to weak electrolytes, another phenomenon 
appeared, in that the observed effect was many times larger than that for 
strong electrolytes. A similar effect had already been observed by Gye-
mant in 1928 in solvents of very low dielectric constant (D ~ 3). Wien 
suggested that the large increase in conductance in the case of weak 
electrolytes is due to an increase in the degree of dissociation. This new 
effect is referred to as the dissociation field effect or, sometimes, as the 
second Wien effect (see part II C). 

Both of these effects were discovered without the aid of theory. Subse­
quently, the observed results have been accounted for fairly satisfactorily 
on the basis of the theory of ion interaction (see part III). 

Following the first experimental work in 1922, Wien and his coworkers 
devoted themselves to studying all characteristics of the field effect. As 
their work progressed, it became more and more apparent that this phe­
nomenon would be helpful in leading to a better understanding of electro­
lytic solutions. Since publications relating to the Wien effect have 
emanated from many different laboratories and have, in the main, been 
reported in physical journals, which are not readily accessible to chemists, 
and since no review of these publications has hitherto been attempted, it 
seemed worth while to undertake a complete review of the literature and 
to summarize the results in this new field. It is hoped that the present 
review will prove helpful to chemists in arriving at an understanding of 
the underlying problems, many of which give promise of important appli­
cations and extensions. In writing this review we have carefully con­
sidered all reported studies relating to the Wien effect and have attempted 
to make the bibliography as complete as possible. 

II . EXPERIMENTAL RESULTS 

A. Experimental technique 

The particular experimental method that may best be employed in 
studying the conductance of electrolytic solutions with high fields is deter­
mined by the properties of the solution, such as the specific conductance, 



370 HARTLEY C. ECKSTHOM AND CHRISTOPH SCHMELZER 

the temperature coefficient of conductance, the density, the heat capacity, 
and the field strength used. The main difficulty in carrying out these 
measurements is to avoid excessive heating of the solution (and attendant 
change in resistance) during the time required for the resistance measure­
ment. Ordinary methods of resistance measurement may sometimes be 
used for poorly conducting systems and at moderate fields, but generally, 
for good conductors and at high fields, reliable results are obtained only 
by means of impulse methods, where the high potential acts for a very short 
period of time. Even then, the influence of the heat effect upon the re­
sistance measurement cannot be completely eliminated. For example, 
there is still a rise in temperature of 0.240C. when a field of 100,000 volts 
per centimeter is applied for only 1O-6 sec. to a solution with a specific 
conductance of 10-4 mhos (and density and heat capacity of unity). If 
the temperature coefficient of conductance is 2 per cent per degree, the 
corresponding resistance change is 0.5 per cent. This example may serve 
to illustrate the difficulties that had to be overcome in measuring the 
deviations from Ohm's law. 

Resistance measurements during very short time intervals may be 
carried out in two different ways. First, instantaneous values of the 
resistance may be recorded by means of a cathode ray oscillograph (Ro-
gowski), and second, the average resistance change may be measured with 
ordinary integrating instruments (Wien). Whereas the former method 
is more direct, it cannot compare in accuracy with the second, more 
tedious, integrating method. 

Another difficulty that appears in carrying out these measurements is 
due to the fact that it is impossible to obtain (with the usual methods) a 
constant potential for short time intervals (in the order of one-millionth 
of a second). This, obviously, has to be considered only for the inte­
grating impulse method, where the exact voltage-time function must be 
known in order that the average resistance may be correlated with an 
average potential. 

In his single-spark method Wien (32) used damped oscillations obtained 
by discharging a condenser through a resistance and an inductance. 
Under these conditions the voltage-time function may easily be calcu­
lated, provided the electrical constants of the circuit are known. 

Figure 1 shows the diagram of the apparatus used by Wien in his original 
experiments. By opening Sw3 in the primary circuit of the induction 
coil I, the condensers C are charged to a potential which causes a break­
down across the spark gap S. This starts an oscillating discharge in 
the circuit S-C-L-R1 (or S-C-L-R2). The inductively coupled ther­
mocouple Th, together with the galvanometer G, measures the time 
integral of a current which is proportional to the current oscillating in the 
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main circuit. Most of the energy stored in the condensers C is dissipated 
in the resistance, and therefore the current integral is proportional to the 
total amount of stored energy, 

U0 = V2
FC/2 

and inversely proportional to the resistance. Two resistances Ri and 
R2 can thus be compared in two consecutive measurements, when the 
rest of the circuit remains unchanged. If Ri and R2 are pure ohmic 
resistances, then equal galvanometer deflections indicate equality of 
Ri and R2.

4 For measurements with electrolytic solutions Ri represents 
the conductance cell, containing the solution, and R2 a comparison re­
sistor, whose value is independent of field strength. 

With the single-spark method Wien was able to measure conductivities 
of electrolytic solutions in fields up to 500,000 volts per centimeter with 

FIG. 1. The single-spark arrangement 

an error of about 1 per cent. The accuracy of the method is mainly 
limited by the relatively poor reproducibility of the spark potential. 
(Even when radioactive substances are used to ionize the air in the spark 
gap, it is not possible to eliminate retarded sparks completely.) The field 
strength of 500 kilovolts per centimeter represents an upper limit deter­
mined by the electrical strength of the solution. Moreover, it could only 
be obtained with special cells (20, 32), for which the calculation of the 
field strength is very uncertain. In the later quantitative work with 
ordinary cells, the maximum field strength seldom exceeded 250 kilovolts 
per centimeter. 

In order to enhance precision, a way had to be found that permitted 

4 The same method can be used for measuring complex resistances (see Malsch: 
Ann. Physik 84, 841 (1927)). In conductance measurements errors may be intro­
duced by neglecting the inherent capacity of the electrolytic resistance. Its influ­
ence increases with increasing frequency, increasing dielectric constant of the solu­
tion, decreasing cell constant, and decreasing conductivity. See the discussions 
of Malsch (17), Malsch and Hartley (18), and Michels (21). 

/ 1 M 
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comparison of two resistors simultaneously instead of in two consecutive 
measurements. Malsch and Wien (20) found the solution of this problem 
in the baretter method. The fundamental circuit is the same as in the 
single-spark method, figure 1, but the unknown and the comparison resistor 
are now connected in parallel. The partial currents through these resistors 
are compared in a baretter bridge, which reduces the determination of 
high-frequency currents to a resistance measurement with direct current: 
the high-frequency current heats a thin wire, thus changing its resistance. 

Figure 2 shows a typical baretter arrangement. The main circuit is 
formed by the spark gap S, inductor L, condenser C, and two parallel 
arms containing Ri and R2. Each one of these arms is coupled to a 
baretter B through the resistive coupling unit RtCk.

s The resistance 
change of the baretters is measured in the Wheatstone D.C. bridge 
B-B-Rh, which is separated from the main high-frequency circuit by 
choke coils Ch.6 

to induction coil -MMAMr--

4» 
FIG. 2. A typical baretter arrangement 

If the resistors in the two arms are equal when the condenser C is dis­
charged, equal currents flow through the two baretters, thus yielding equal 
changes of resistance, and the D.C. bridge therefore remains balanced. 
This method is, consequently, a "null" method. 

As baretters, Malsch and Wien used ordinary incandescent lamps,7 

which were selected for having equal resistance as well as equal tempera­
ture coefficients. By means of Rh the direct current in the bridge is 
adjusted to a point where the resistance changes linearly with increasing 

4 Inductive or capacitive coupling may also be used, but the resistive coupling 
shown in the diagram has the advantage that one can change the sensitivity over a 
wide range without largely affecting the electrical constants of the circuit (1). 

8 Schiele (31) eliminated these chokes by constructing baretters which in them­
selves constitute small Wheatstone bridges. 

7 If Wollaston wires of only a few microns in diameter are used in the baretters, 
the sensitivity can be increased nearly a hundredfold (31). 
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current, thus allowing linear interpolations between the galvanometer 
readings. An alternating switch Sw is used to balance out any remaining 
irregularities. 

Types and arrangements of the resistances in both arms are determined 
by the special problem involved. The combination shown in figure 2 
permits the comparison of two electrolytic resistors. The small high-
frequency resistors ri and r2 (33) serve to balance the partial currents. If 
the inherent cell capacity cannot be neglected (see footnote 4), ri and r2 

have to be connected parallel to Ri and R2 rather than in series, because 
otherwise large errors may be introduced (18). 

The advantage of this baretter method is that the measurements are 
independent of irregularities of the spark, so that the much higher sensi­
tivity may be fully utilized. An accuracy of 1 to 2 parts in 10,000 as 

FIG. 3. V/V, is the ratio of the instantaneous voltage drop across the resistor to 
the spark potential. 8 = TR \/C/L. In a, 8 = 1.0; in b, 8 = 2.14; in c, 8 = 6.28. 

obtained by Schiele (28) probably does not represent the upper limit. Fur­
thermore, this method constitutes a general precision method for measure­
ments with high frequencies and high potentials. It is not confined to 
resistance measurements alone, but may be used to measure inductances 
and capacities as well. 

For both the single-spark and the baretter method, the form of the 
voltage-time function is of great importance, because it influences the 
measured resistance average. The curve should have a flat top, which 
means that the potential is near its maximum value during a large fraction 
of the time interval during which the discharge occurs; in other words, 
most of the energy should be dissipated when the voltage is high. Ob­
viously, this condition has to be fulfilled with any integrating method, 
and by proper choice of the electrical constants in the oscillating circuit 
it may be fulfilled. In figure 3, at the top, are shown three typical 
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voltage-time functions, in which the influence of L1 C, and R on their 
shape is expressed in terms of the logarithmic decrement 

e = TRVCJL 

The lower curves represent the corresponding current integrals or energy-
time functions: 

U (t) = R f i\t) tit 

which, for t = » , are equal to Uo — V\C/2. In the case of curve a, only a 
small amount of the total energy is being dissipated while the voltage drop 
across the resistor is greater than 0.8 times the maximum voltage Vm 

(indicated in the figure by vertical arrows). From curve b, however, it is 
seen not only that Vm increases with increasing decrement, but also that 
a greater portion of the energy is consumed during the time interval that 
the voltage is within the desired interval. For still larger decrements Vm 

increases further, but the amount of energy dissipated in the desired 
voltage interval now decreases (curve c). For optimum operating condi­
tions it is thus desirable to work with a decrement approximately 
equal to ir. 

The impulse duration r is defined as the time of one half-period of the 
undamped oscillation of the main circuit.8 For this case, 6 = R = O, and 

r = WLC 

It is seen from figure 3 that for decrements of the order TT most of the 
energy actually is dissipated in such a time interval. With given values 
for decrement, impulse duration, and total resistance,9 the electrical con­
stants that yield the desired voltage-time function are, 

L = rR/6 and C = T6/T2R 

The experimentally determined values for the relative conductance 
change, AX/X£_o, at different field strengths represent the actual con­
ductance changes due to deviations from Ohm's law superimposed on con-

8 The impulse deviation so defined is only an approximation, since the frequency 
of a freely oscillating, damped circuit is slightly lower than without damping. The 
approximation is sufficient for experimental purposes, where only the order of mag­
nitude is of interest. However, it should be considered by comparing experimental 
data with theoretical results. In this comparison a Fourier analysis of the impulse 
will indicate whether a correlation of the experimental result with the fundamental 
frequency, a = TT/T, is justified or whether the influence of harmonics, na, has to be 
taken into account. 

' In the case of the baretter method the parallel resistance of the two arms has 
to be considered. 
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ductance changes due to the heating of the solution during the measure­
ment. In order to separate these two effects, the heat effect must be 
calculated (20) from the energy, Ua, dissipated in the electrolytic resistor. 
Because of energy losses in the spark itself, Ua is smaller than the total 
amount of energy stored in the condenser, LV0 but a corresponding 
correction, p = Ua/U0, can easily be determined calorimetrically. Then, 
the relative change in conductance due to Joule's heat is simply given by 

AX/X = ePpV2
FC/im'c*A 

where m! is the mass of the solution between the electrodes of the cell, 
c* the heat capacity of the solution, and A the mechanical equivalent of 
heat. The temperature coefficient /3 is assumed to be independent of 
field strength, e represents the fraction of energy dissipated in the electro­
lytic resistor; it is equal to 1/2 in the case of the baretter method, where 
the energy Ud is dissipated in two equal resistors. 

The heat effect may be decreased by decreasing the impulse duration 
and the energy dissipated in the electrolytic resistor. The latter may be 
accomplished by inserting a resistor Rp (figure 2) in parallel with the 
resistors to be measured (21). Both methods are limited because the 
deviations from Ohm's law depend, in some degree, upon impulse dura­
tion, and because the introduction of Rp tends to decrease the sensitivity 
and influence the decrement of the oscillating circuit. The influence of 
the heat effect may be eliminated by comparing resistors that have the 
same temperature coefficient of conductance. 

The actual deviations from Ohm's law, as obtained from experiments 
at high fields after correcting for the heat effect, may be referred to corre­
sponding values of the spark potential Vr. Thus, intercomparisons are 
possible for measurements that have been carried out with the same 
decrement and impulse duration. In order to determine the average field 
strength, which corresponds to a certain measured average conductance, 
the average potential drop across the resistor must be calculated. This 
average potential follows from the solution of the fundamental differential 
equation for a freely oscillating damped circuit, in which the resistance is 
now a function (assumed known) of the potential. Malsch and Wien (20) 
considered a linear dependency of conductance and field strength a suffi­
ciently close approximation. They obtained for the average potential in 
the case of an oscillating discharge (6 < 2x) 

F = [45(1 + 0 / { 3 ( l + 252)(1 - e-)\}VVr 

where 5 = d/rr and a = 3x5(4 — 52)_1/2. Dividing V by the distance 
between the electrodes in the conductance cell finally yields the average 

10 The losses in the condenser and in the inductance coil are negligible. 
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field strength. In this computation Malsch and Wien neglect the influ­
ence of the stray field around the electrodes. They estimate that uncer­
tainties due to this and the preceding assumption as to the relation be­
tween resistance and potential are of the order of several per cent (33). 

B. The first Wien effect 

There are two types of experiments that show clearly that the con­
ductance of an electrolytic solution increases with increasing field strength. 

The first experiment was carried out by Wien (33, 34) with the baretter 
method and is based on the following principle: The conductance change 
due to heat is always the same for any form of the voltage-time function, 
provided the dissipated energy remains unaltered. If, therefore, a change 
in the form of the voltage-time curve, with otherwise constant parameters 

8 

t 

4 

1 

A,„ 
-z 

-4 

FIG. 4. Acetone solutions of cadmium iodide (curves 1 and 2) and of cobalt chlo­
ride (curves 3 and 4), where XB_0 = 0.002. In all four cases C = 3029 cm. In curves 
1 and 3 L = 245,000 cm., and in curves 2 and 4 L = 30,000 cm. 

(spark potential and total capacity in the circuit), yields a change of the 
measured resistance, then this change can only be due to another, super­
imposed effect which likewise is a function of the field strength.11 Thus, 
for a positive field effect, the measured resistance change decreases with 
decreasing decrement (for 0 < 6 < x; see also figure 3). This actually was 
observed by Wien (33, 34). Figure 4 shows similar results obtained by 
Bauer (1) for acetone solutions of cadmium iodide (curves 1 and 2) and 
cobalt chloride (curves 3 and 4) for two values of the decrement. When 
this decrement was decreased to 0.34 times the initial value (curves 2 
and 4), the effect decreased very markedly (curves 1 and 3). In accord-

11 The impulse method is applicable only when relatively long impulses are used, 
under which condition the impulse duration does not influence the magnitude of 
the field effect, i.e., for r > 10-6 sec. 
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ance with the negative temperature coefficient of conductance of the 
cadmium iodide solution, the effect even changed its sign. 

The experiment by the second method was carried out by Fucks (9) 
in Rogowski's laboratory, using an instantaneous impulse method. He 
photographically recorded the voltage drop across an electrolytic resistor 
with a high-speed cathode ray oscillograph. Figure 5a shows a diagram 
of the apparatus used. A condenser is discharged into a long line which 
terminates at the opposite end in the conductance cell Ri in series with 
the constant resistor R2. The parallel capacity C balances the effects of 
the inherent cell capacity and the capacity of the deflection plates in the 
oscillograph. For a measurement two consecutive exposures with the 
same potential are made. In the first, the oscillograph is connected 
across BC, which gives the true voltage-time function, whereas in the 
second, the oscillograph across AB records the voltage drop across the 
variable resistor. When the two traces are superimposed, the ratio of the 

FIG. 5. a, Fucks' oscillograph arrangement; b and c, drawings of typical traces 
obtained by Fucks 

ordinates measures directly the total resistance change of the solution. 
Figure 5b shows a result obtained with an aqueous sodium chloride solu­
tion, where the field effect is very small compared with the heat effect. 
The asymmetry of the trace VAB, compared with the trace VBC (indi­
cated by horizontal arrows), shows clearly the heating of the solution 
during the time interval of 1O-6 sec.12 The maximum field strength, E'm, 
was 185 kilovolts per centimeter. A similar result for an aqueous solution 
of barium ferrocyanide, with E'm = 180 kilovolts per centimeter, is shown 
in figure 5c. Here the deviation from the true voltage-time function, 
and therefore the total resistance change, is much larger, although the 
heat effect is nearly the same as in the case of the sodium chloride solution 

12 If Ri showed only a field effect, the curve VAB would be symmetrical with 
curve VBC. The observed asymmetry is due to the heat effect, which is an integral 
function of time. 
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in figure 5b. This difference can be due only to an actual deviation from 
Ohm's law. Fucks' results are in excellent agreement with Wien's meas­
urements. This agreement indicates that the method employed by 
Malsch and Wien to calculate the average potential of an oscillating dis­
charge is correct.13 

Already the early experiments indicated that the magnitude of the Wien 
effect increases with increasing valency of the ions. Wien (33) investigated 
a large number of salts of the valence types 1:1, 1:2, 1:3, 1:4, 2:1, 3:1, 
2:2, 2:3, and 3:2 and found as an empirical rule that for the same aver­
age field strength and the same conductance at low fields, X*_o, the change 
in conductivity may be expressed by the equation 

AA/AB_o = constant {zit^ (D 
This expression is only an approximation, and deviations as high as 20 
per cent may occur for individual salts, especially those of the higher 

• 

ft jS 
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FIG. 6. Curve 1, lithium ferricyanide; curve 2, magnesium sulfate; curve 3, barium 
ferricyanide; curve 4, barium ferrocyanide. All for XB_O = 4.5 X 10_s. • and O 
refer to results obtained with two different cells. 

valence types. It is, however, very helpful in correcting relative measure­
ments (as obtained with arrangements shown in figure 2) for the Wien 
effect of the comparison solution. Figure 6 illustrates the influence of 
valency on the observed conductance change for different salt types. 

The dependence of the conductance change on the field strength is 
somewhat complicated. In figure 7 are shown idealized curves for three 
different valence types. Initially, at low fields, the curves are convex 

13 Hiiter (12) later modified the method of Fucks in such a way that he was able 
to obtain photographic plots of instantaneous voltage versus current. He states 
that the oscillograph method is limited to an accuracy of about 1 per cent, mainly 
because it is very difficult to obtain a better concentration of the electronic beam. 
For more qualitative work, this method gives results much more rapidly than the 
integrating methods. 
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towards the axis of potential; they then pass through an inflection point 
where they approximate linearity and thereafter approach a constant 
limiting value. In the figure the different portions of the curves are indi­
cated by continuous or broken lines. The limiting characteristic is to be 
seen also in figure 6, especially in the case of curve 1. How much of the 

FIG. 7. Curve 1 represents a 2:4 salt type, curve 2 a 2:3 salt, and curve 3 a 1:3 salt 

* L . . 

FIG. 8 FIG. 9 

FIG. 8. Curve 1 represents a very dilute solution, curve 2 a dilute solution, and 
curve 3 a moderately concentrated solution 

FIG. 9. O, barium ferricyanide; • , lithium ferricyanide 

linear and limiting parts of the curves may be obtained experimentally 
depends upon concentration. In figure 8 the absolute values of conduct­
ance are plotted against field strength for three concentrations. For 
solutions of high concentration, curve 3, the curve is nearly linear through­
out, and it is not possible to obtain the limiting effect because of the 
breakdown of the solution. With solutions of lower concentration, curves 
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2 and 1, the curves are markedly concave toward the axis of potential; 
at lower fields the curves rise steeply and at higher fields they flatten out 
and approach a limiting value. The limit is the same at all concentra­
tions, but this limit is reached at lower fields which are the lower, the 
lower the concentration. 

The limiting effect is the most important result of these investigations. 
Wien showed that the equivalent conductance of a solution approaches a 

TABLE 1 
Limiting field effect and limiting concentration effect of several aqueous solutions 

K8Fe(CN),. 

Li8Fe(CN)6 

K1Fe(CN)6. 

MgSO4 

MgCrO4 

Ba8[Fe(CN)6 

Ba2Fe(CN)6. 

1:3 

1:3 

1:4 

2:2 

2:2 

2:3 

2:4 

10*c 

3.1 
6.4 

3.7 
7.5 

2.9 
6.4 

4.2 
8.9 

4.2 
8.7 

3.3 
7.2 

3.5 
7.7 

& 

3.2 
4.3 

3.7 
5.5 

6.1 

6.9 
9.0 

4.4 
7.4 

10.3 
14.2 

12.2 
19.8 

• A , 

10« 

3.0 
4.3 

3.6 
4.9 

4.7 
6.7 

7.5 
10.7 

5.2 
7.2 

10.4 
15.0 

12.9 
19.4 

limiting value as the field is increased indefinitely and that this limiting 
value is the same as that approached on diluting this solution indefinitely 
when the conductance is measured at low fields (33, 36, 37) (see, also, 
Schiele (30)). If A1, is the equivalent conductance of an electrolyte at 
ordinary fields, and As_„ and Ax, are, respectively, its limiting equivalent 
conductances as the field is increased indefinitely and as the concentration 
is decreased indefinitely, then A*.*, — Ac = A00 — Ac. In table 1 are 
given values of these differences each divided by Ac. As may be seen from 



THE WlEN EFFECT 381 

the table, these ratios are equal within the limits of the experimental errors 
involved in the measurements and the extrapolations. While the limiting 
field conductance thus agrees with the limiting concentration conductance, 
it is by no means certain that the two limiting values are identical; while 
the limiting concentration value is in most cases a close approximation, 
the limiting field value represents only a rough empirical extrapolation. 
In this connection attention may be called to Wilson's theory of the Wien 
effect, according to which a small electrophoretic effect remains at high 
fields. 

In the light of these facts, it follows almost as a necessary conclusion 
that the high external field tends to decrease those influences which are 
responsible for the decrease of the ordinary low field conductance with 
increasing concentration. 

The study of the convex part of the curve at low fields (figure 7) was 
especially difficult, because of the minute changes in conductance that 
had to be measured. I t was therefore possible to study this portion of 
the curve only for salts of high valence type (z\Zz > 3). Wien (35) used a 
relative method corresponding to that illustrated in figure 2. He corrected 
for the Wien effect in the comparison solution, which contained a 1:1 
salt, in the manner described above, equation 1. The portion of the curve 
in question has nearly a quadratic form and may be expressed for fields 
up to 25 kilovolts per centimeter with the first two terms of the following 
series 

AA/AB=0 = AE'\\ ~ BE'2 + ) 

where the constants A and B are determined empirically. In figure 9 
the experimental curve for barium ferricyanide is shown as a full line.14 

The dotted curves 1 and 2 are computed according to the above formula, 
using the first and the first and second terms, respectively. 

Values of A and B obtained by Wien for aqueous solutions, by Bauer 
for solutions in acetone, and by Possner for a 50 per cent solution of cane 
sugar in water as a solvent are given in table 2. 

The constants A and B are complicated functions of the temperature, 
the dielectric constant of the solvent, the valence of the ions, the concen­
tration, the viscosity, and individual ionic properties. Generally, from 
the limited data available, it appears that A increases and B decreases 
with decreasing dielectric constant of the solvent. The values of Possner 
show that viscosity may have a slight influence on the observed results, 
although this effect is perhaps masked by the influence of the decreased 
dielectric constant. 

14 The experimental curve for lithium ferricyanide has been inserted to illustrate 
the influence of the valency of the ions upon the potential effect at low fields. 
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TABLE 2 
Experimental values for A and B 

VALENCE TYPE I " j - 0 X 1(X A X 10" B X 10« 

Solvent, water. T ~ 18°C. (Wien (35)) 

Li8Fe(CN),. 

Li4Fe(CN)6. 

MgSO4 

Ba1[Fe(CN),], 

Ba2Fe(CN), 

2.1 
2.3 
2.9 
3.8 

1.5 
2.1 
2.3 

1.7 
1.7 
2.3 
6.0 

1.9 
2.1 
4.5 
7.5 

1.9 
3.2 
3.9 

Solvent, acetone. T ~ 18°C. (Bauer (I)) 

KI. 

CdI8 

Cd(NO,)2* 

Ni(NOs)2*. 

1:1 

2:1 

2:1 

2:1 

8.0 
4.0 
2.0 

8.0 
4.0 
2.0 

8.0 
4.0 
2.0 

8.0 
4.0 
2.0 

0.263 
0.334 
0.334 

0.387 
0.615 
0.720 

0.211 
0.527 
0.720 

0.176 
0.438 
0.527 

0.0527 
0.0527 
0.0438 

0.0351 
0.0438 
0.0351 

0.0438 
0.0438 
0.0351 

0.0527 
0.0351 
0.0140 

Solvent, 50 per cent aqueous solution of cane sugar. D ~ 60. 180C. (Possner (27)) 

MgSO4 2:2 0.23 1.8 7.4 

* These electrolytes are probably not completely dissociated in acetone and thus 
may exhibit a small dissociation field effect superimposed on the first Wien effect. 
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While the specific properties of the solution and the temperature influ­
ence the magnitude of the Wien effect, it is also dependent upon the length 
of the time interval during which the field is applied. In table 3 are 
given values of AA/AB=0 for three salts for time intervals varying from 
6 X 10~7 to 5 X 10~6 sec, the average potential being the same for all 
time intervals. On examining the table it is seen that in all cases the 
value of AA/A^0 increases initially with increasing length of the time 
interval and approaches what appears to be a constant limiting value, 
this limit lying at longer time intervals in the case of salts of higher valence 
type. Thus for beryllium sulfate AA/AB=0 has reached a constant value 
of 1.08 for a time interval of 1.4 X 1O-6 sec, while for calcium ferrocyanide 
a constant value of 10.5 is reached for a time interval of 1.5 X 10 -5 sec. 
This interesting effect has not yet been the subject of a detailed investiga­
tion. It has been studied only sufficiently to determine the length of the 

TABLE 3 
The influence of the impulse duration, T, on the Wien effect for a constant 

average potential {S3) 

seconds 

6 X 10-' 
9 X 10"7 

1.4 X KT6 

4.5 X 10"6 

1.5 X 10"6 

3.0 X 10~6 

5.0 X 10~6 

BeSO< 

0.92 
0.99 
1.08 
1.04 
1.03 
1.15 
1.07 

(AA/A£_„) X 10! 

Ca5Fe(CN). 

4.8 
6.8 
8.4 

10.5 
10.5 
10.7 

BasFe(CN)6 

8.6 
10.9 
13.1 
12.9 
13.1 

impulse duration necessary to render the observed field effect independent 
of the length of this impulse duration.15 

Summarizing the outstanding phenomena that characterize the Wien 
effect, we have: {1) The conductance of a strong electrolyte increases with 
increasing field strengths and approaches a limiting value which appears 
to be identical with Ax. With decreasing concentration this limit is ap­
proached at lower fields. (2) The magnitude of the field effect increases 
with increasing valency of the ions. (S) For very low fields and to a first 
approximation the conductance increase is proportional to the square of 
the field, the proportionality constant depending upon the nature of the 
solute and the solvent. (4) The conductance increase is a function of 

15 This effect led Debye and Falkenhagen (5) to the theoretical prediction of the 
dispersion phenomena in electrolytic solutions at high frequencies with ordinary 
potentials. 
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the impulse duration and for 2:4 salts approaches a constant value for 
T > 10~5 sec.; for salts of lower valence type constancy is reached at lower 
periods. 

C. The dissociation field effect 

During investigations incident to the development of high electrolytic 
resistances, Gyemant (11) studied solutions of picric acid in benzene-
alcohol mixtures. In the course of these investigations he found that the 
addition of phenol or mineral oils reduces the temperature coefficient of 
conductance of these solutions to zero. On measuring the resistance of 
these solutions under high potentials, he observed deviations from Ohm's 
law which were far greater than any deviations previously observed by 
Wien and his coworkers. Because of the fact that the temperature coeffi­
cient was zero and \E=o was less than 10~8 mhos, he determined the resist­
ance by simultaneously measuring voltage and current. Thus, at a field 
strength of 42 kilovolts per centimeter, he found that for a 0.7 per cent 
picric acid solution in benzene containing 5 per cent ethyl alcohol and 0.4 
per cent mineral oil, AA/AB=0 was equal to 0.85, and for a 0.7 per cent 
picric acid solution in benzene containing 8 per cent ethyl alcohol and 3 
per cent mineral oil, AA/Aj.=0 was equal to 0.52. Deviations of this magni­
tude have not been observed in aqueous solutions. Furthermore, the 
conductance of these solutions was found to be a linear function of the 
field strength. 

In order to account for these enormous deviations, Gyemant considered 
it possible that the degree of dissociation might be increased by high fields. 
As an experimentum crucis he measured the conductance perpendicularly 
to the high field, reasoning that if the degree of dissociation increases with 
field strength, the conductivity measured in this direction should increase 
proportionally to the conductance increase in the direction of the high 
field. Since the results of this experiment were negative, he concluded 
that the observed high field effect was probably not due to an increase of 
dissociation. 

Joos (13), relying upon this experiment, suggested that the mechanism 
might be the same as for the first Wien effect, i.e., a property of free ions 
only. To clarify this question, Wien (38) and Schiele (28) studied the 
deviations of strong and weak acids in aqueous solution under the influ­
ence of high fields. 

These electrolytes were chosen because it had been observed that their 
solutions exhibit dispersion effects of the same magnitude in high-frequency 
fields. Both the Debye-Falkenhagen dispersion effect and the first Wien 
effect are due to interactions between free ions and field. If, therefore, 
the field effects in strong and weak acids are to be accounted for on the 
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basis of free ions only, then the magnitude of these effects as observed 
should be of the same order. If, however, they were found to be of 
different order, this would indicate that different mechanisms are involved 
in the effect of fields on strong and weak acids. 

Schiele, using an improved baretter method, compared acetic acid and 
the chloroacetic acids with hydrochloric acid. The dissociation of these 
acids increases with increasing number of substituent chlorine atoms, and 
Schiele found that the differences in the conductance change between the 
acids and hydrochloric acid increase as the carboxylic acid is weaker. 

The results of Schiele's investigations are shown in figure 10b, where 
values of differential conductance effects, AA/AB=0, are plotted against 
field strength. Trichloroacetic acid, being a strong acid, shows no ob­
servable difference with respect to hydrochloric acid. With dichloroacetic 
acid (curve 1) a difference is just observable. Monochloroacetic acid 

KV/cm 

FIG. 10. Curve 1, dichloroacetic acid; curve 2, chloroacetic acid; curve 3, tartaric 
acid; curve 4, propionic acid; curve 5, acetic acid; curve 6, trichloroacetic acid; 
curve 7, hydrochloric acid; , sulfuric acid. In b, XE=O = 2.0 X 10~4; compared 
against hydrochloric acid. 

(curve 2) shows a large effect and acetic acid (curve 5) a very large one. 
The curve for propionic acid, which has practically the same strength as 
acetic acid, lies just below that of the latter acid (curve 4). The curve 
for tartaric acid lies well below that of acetic acid, which is in accord with 
the greater strength of tartaric acid. In figure 10a are shown the values 
of A.B_O/AW for a number of acids. Comparing with figure 10b it is apparent 
that acids having a low conductance exhibit a high field effect. 

The bases exhibit field effects closely paralleling those of the acids. 
Strong bases exhibit no difference with respect to hydrochloric acid, while 
weak bases exhibit an effect which is the greater the weaker the base. 
The effects are illustrated in figure 11. 

Solutions of normal salts in solvents of lower dielectric constant in which 
the electrolyte is incompletely dissociated exhibit the same effect as do 
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weak acids and bases in water. In figure 12 are shown curves for po­
tassium iodide and lithium bromide in acetone. Potassium iodide is a 
much stronger electrolyte in this solvent than is lithium bromide, as ap­
pears from figure 12a. As may be seen from figure 12b, potassium iodide 
exhibits a much smaller differential effect than does lithium bromide. 

The results just described show conclusively that the magnitude of the 
field effect increases with decreasing strength of the electrolyte, that is, 
with increasing association of the ions to ion pairs. Since the large ob­
served increase in conductance cannot be accounted for by the first Wien 
effect, it is impossible to escape the conclusion that the enhanced effect 
found in the case of weakly dissociated electrolytes is due to an increased 
dissociation of the electrolyte under the action of the applied field. 

FIG. 11. Curve 1, • , barium hydroxide, O, sodium hydroxide; curve 2, methyl-
amine; curve 3, aqueous ammonia; curve 4, sodium hydroxide; curve 5, barium 
hydroxide. In b, \E-O = 2.0 X 1O-4; compared against hydrochloric acid. 

Although the first and the second Wien effects cannot be accounted for 
by the same mechanism, they, nevertheless, have certain characteristics 
in common. As in the case of the first Wien effect, the change in conduc­
tivity for constant field in the second Wien effect is a function of the 
impulse duration. Results of Michels (21) for cobalt chloride in acetone 
are shown in figure 13, from which it is seen that for this electrolyte the 
effect approaches a constant value for the impulse duration r > 
1.7 X 10"6 sec. 

For low fields, plots of AA/A^0 against E' for the dissociation field 
effect are slightly convex toward the i?'-axis, in which respect they resemble 
the curves of the first Wien effect. On the other hand, no trend toward a 
limiting effect has been observed in the case of the dissociation field effect. 
Recalling the AE=o/A.x - s/c curves, it is apparent that the dissociation 
field effect yields only a relatively small increase in the number of free 
ions at 100 kilovolts per centimeter in the aqueous solutions measured. 
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Consequently, an extremely high external field would be necessary to 
dissociate these electrolytes completely;16 it seems very doubtful that such 
fields are actually attainable. 

In this connection it is of interest to mention the studies of Malsch and 
Hartley (18) of colloidal solutions of cetylpyridonium chloride in water, 

FIG. 12. Acetone solutions of potassium iodide (curves 1, 6, 7, and 8) and of 
lithium bromide (curves 2, 3, 4, and 5), where in curve 3 X̂ _o = 0.00012 and c = 
0.00168; in curve 4 X«_0 = 0.00006 and c = 0.00058; in curve 5X^_0 = 0.00003 and 
c = 0.00023; in curve 6 Xi_0 = 0.00012 and c = 0.00073; in curve 7 XE_O = 0.00006and 
c = 0.00036; and in curve 8 X*_0 = 0.00003 and c = 0.00017. 

KV/cni 

FIG. 13. Acetone solution of cobalt chloride where X«_o = 0.93 X 10-4. In curve 1, 
O, T = 3.6 X 10-6; • , T = 1.9 X 10-«. In curve 2, r = 5.4 X 10"7. 

where very large potential effects were observed. The outstanding result 
is that the conductance for very high fields does not approach but exceeds 
the value of AM (figure 14). Malsch and Hartley give the following ex-

18 It must be remembered that the presence of any free ions leads to an ion 
atmosphere and thus to a deviation explained by the first Wien effect. 
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planation: When sufficiently concentrated, the solution contains very large 
complexes of positive ions (micelles), with some small negative ions rela­
tively firmly attached to these complexes, thus decreasing their mobility 
and consequently the low field conductance. High fields, however, tend 
to separate the anions from the large complexes, thus leaving very highly 
charged positive particles. According to Stokes' law the contribution to 
the conductance of a complex is larger than that of a corresponding number 

/20 -

FIG. 14. Cetylpyridonium chloride in water. In a: • , low potential; curve 1, 
SO kilovolts per centimeter; curve 2, 100 kilovolts per centimeter; curve 3, 150 kilo-
volts per centimeter; curve 4, 200 kilovolts per centimeter; T = 8 X 1O-7 sec. In b: 

is AA/AB_0 for A = A00; XB_o = 1.29 X 10-»; curve 5, r = 16 X 10~7 sec; curve6, 
r = 8 X 10"7 sec.; curve 7, r = 2 X 10"' sec. 

of single ions, so that the conductance may well increase to a value which 
is larger than A00.

17 

III. THEORY 

Many of the more important properties of electrolytes depend upon ion 
interaction due to Coulomb forces, which represent the extreme case of a 
"chemical force" that falls off the most slowly of all forces leading to an 
interaction. The theoretical analysis of accurate experimental data has 

17 Since the writing of this review, H. Diekmann (Ann. Physik [5]32, 378 (1938)) 
has published results of an investigation of aqueous solutions of cetylpyridonium 
chloride and of magnesium sulfate in glycerol-water mixtures at different tempera­
tures. The same effect that is found for cetylpyridonium chloride is also present 
in systems of magnesium sulfate-glycerol-water. Diekmann therefore draws the 
conclusion that there is a certain micelle structure in the case of the magnesium 
sulfate-glycerol-water systems. However, it may be pointed out that: (1) Ordi­
nary conductance data for magnesium sulfate-glycerol-water systems do not show 
the behavior typical of colloid electrolytes. (B) For the relatively high concentra­
tions studied and for a 2:2 salt in a solvent of D ~ 60, relatively strong ionic associa­
tion must be expected. (S) Diekmann does not mention that the high-field con­
ductance exceeds A00, as it does in the case of cetylpyridonium chloride solutions 
in water. 
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led to a theory of electrolytes where long-range interactions play a r61e 
in accounting for the properties of completely dissociated electrolytes, 
while short-range interactions18 are an important or determining factor in 
the case of incompletely dissociated electrolytes. By careful selection of 
experiments and conditions, various characteristics of these forces become 
known. Conductance studies, using external fields of low potential and 
low frequency, of high potential and of high frequency, have been very 
successful in yielding data which have been theoretically interpreted by 
using these interactions as the basis of analysis. However, that we know 
very little about the characteristics of these interactions is apparent when 
it is recalled that only data for extremely dilute solutions may be accounted 
for and that even here discrepancies appear. 

The Debye-Htickel-Onsager theory of conductance (6, 22) is based on 
the assumption that only a stationary field of very low potential (E ~ 0) 
is being applied when the conductance is measured. Under these condi­
tions, approximations may be made in which terms containing higher 
powers of the field are neglected. This leads to an equation in which the 
conductance does not depend upon the field,—a result which has been 
amply verified by experiment. Obviously this theory must be modified 
if it is to account for the first Wien effect, which is observed when the 
solution is subjected to a high field. As a first attempt in this direction, 
Joos and Blumentritt (3, 4, 14) evaluated the neglected higher terms of 
the Debye-Hiickel-Onsager equation. They obtained an equation of the 
form 

AA/AM = .4X2 - B'X* + ... 

This result guided Wien in his investigation of the low-potential region 
(37). Unfortunately, Joos and Blumentritt made assumptions as a result 
of which their theory has only a qualitative significance (39). Further­
more, it fails to account for the limiting effect obtained with very high 
fields. 

Using another approach, Falkenhagen (7) later obtained a qualitative 
theory which applied to the whole curve. His treatment leads to the 
limiting effect and shows, in general, the influence of valence and dielectric 
constant. Basing their calculations upon this theory, Falkenhagen and 
Fleischer (8) introduced the non-stationary field, thus obtaining an equa­
tion which shows the dependency of the Wien effect upon frequency. 

Overcoming the mathematical difficulties involved, Wilson (39) de­
veloped a quantitative theory of the first Wien effect which is applicable 
to the whole curve; for very low fields the Wilson conductance equation 
reduces to the quadratic form obtained by Joos and Blumentritt. 

18 Short-range interactions may involve quantum as well as Coulombic forces. 
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In the case of the dissociation field effect, a different approach must be 
adopted, since there is no longer complete dissociation, but rather associa­
tion with an equilibrium existing between ion pairs and free ions. As 
explained above, the phenomenon of the dissociation field effect was 
thought to be due to increased dissociation. Onsager (23) showed that 
while the rate of formation of ion pairs is independent of the field, the 
rate of dissociation of ion pairs is a function of the field. This analysis 
indicates that the increased dissociation due to the field is independent of 
the stoichiometric concentration. 

Even though the concepts of ion interaction had been well established 
in the theory of electrolytes, the extension of the theory to the Wien 
effect constitutes a major advance in the attack on the general problem 
of ionic solutions.19 To review briefly the modern concepts underlying 
the theory of ionic solutions, we shall first consider the case in which the 
electrolyte is completely dissociated. The electrostatic attractions and 
repulsions between the ions do not permit a perfectly random distribution 
of the ions; on the time average, there will be more ions of unlike sign 
than of like sign in the neighborhood of the given ion. This "ion at­
mosphere," as it is called, has a symmetrical distribution when no external 
field acts. One of the characteristics of this atmosphere is that it has a 
finite "time of relaxation," i.e., it does not disappear immediately when 
the central ion is removed, and vice versa. Consequently, when a sta­
tionary field of very low potential is applied, causing the central ion to 
move, the distribution of the ion atmosphere becomes asymmetric; there 
are more ions of like sign in front and unlike sign behind the central ion 
than in the case of the symmetrical distribution. The "relaxation force" 
due to asymmetry of the ion atmosphere has a retarding effect upon the 
motion of the central ion. 

There is still another retarding effect acting upon the moving ion, com­
monly referred to as the "electrophoretic" effect or hydrodynamical effect. 
According to hydrodynamic laws, moving ions carry solvent with them. 
This effect extends for some distance from the central ion, so that the ion 
atmosphere again influences the motion of the central ion. The hydro-
dynamical effect manifests itself in such a way that the ion is not moving 
in a stationary solvent, but rather in one that is moving in the opposite 
direction. These two retarding effects have been incorporated in the 
Debye-Huckel-Onsager theory of ordinary conductance and account satis­
factorily for the decrease of conductance with increasing concentration, 
in the limiting case of low concentrations. 

19 For a detailed exposition of the theory of electrolytes we refer the reader to the 
monograph by Falkenhagen (Falkenhagen: Elektrolyte, Hirzel, Leipzig (1932); 
Electrolytes, Oxford University Press, Oxford (1934); Electrolytes, Alcan, Paris 
(1934)). 
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If we apply a very high potential to a solution, we find that the ions are 
given enormous velocities as a result of which the ion atmosphere is very 
greatly modified. However, as Wilson shows, in the limit of extremely 
high fields the ion atmosphere again becomes symmetrical but now con­
tains ions of like sign, ions of unlike sign being constantly swept away at 
such a rate that the field of the ion in question does not influence the 
distribution of ions of opposite sign. Thus the relaxation force disappears, 
leaving only a small contribution from the electrophoretic effect. 

Secondly, we shall consider "weak" electrolytes, or "strong" electrolytes 
in solvents of low dielectric constant. For such systems20 the energy due 
to short-range interactions between the ions of unlike sign is great enough, 
compared with the energy of thermal agitation, so that, on the time 
average, the two ions spend more time as a pair than as free ions. In 
other words, the number of ions free to conduct the electric current is 
small in comparison with the number of ion pairs that have the properties 
of dipoles. Bjerrum (2) and Fuoss and Kraus (10) have given a satis­
factory theory of ionic association which, when combined with the Debye-
Hiickel-Onsager theory, accounts for the conductance of dilute solutions 
at low fields. When a high field is applied, two effects come into play: 
the free ions give rise to a small, normal Wien effect, while the ion pairs 
undergo increased dissociation in accordance with Onsager's theory of the 
influence of the field in the dissociation process. In the latter case the 
high field has shifted the equilibrium, ion pairs ;=± free ions, to the right, 
thus increasing the number of ions free to carry the current. Making a 
study of this shift in equilibrium, Onsager was able to obtain an equation 
which is in quantitative agreement with the experimental values. 

A. Theory of the first Wien effect 

1. The Joos-Blumentritt theory for small fields 

Joos and Blumentritt in their first papers (3, 14) calculated the higher 
terms in the field strengths from the original Debye-Hiickel theory (6) 
and obtained 

AA/AB=0 = AX2 - B1X* + ••• 

where A, B', • • • are known constants. In the later paper by Blumentritt 
(4) these calculations were repeated, using the modified theory of Onsager 
(22). The values of these constants are in fair agreement with the experi­
mental values. However, perfect agreement is not possible because Joos 
and Blumentritt used symmetry conditions which are valid only for zero 
field. Since it is possible to reduce Wilson's theory to the above form for 

20We are now considering those systems on the other extreme where a < < 1. 
There is an intermediate type where a is less than unity, yet is large enough so that 
the number of free ions is comparable with the number of ions in ion pairs. 
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low fields, it is not necessary to consider the Joos-Blumentritt theory in 
detail. 

2. The Falkenhagen theory for the complete curve 

Under high fields an ion has such a high velocity that it travels through 
many thicknesses of the ion atmosphere, 1/K, during a time interval, 20, 
which is the time necessary for the ion atmosphere to reach a random 
distribution after the removal of the central ion. Thus, in the case of 
high fields, the normal ion atmosphere is not formed. It is of interest to 
calculate the number of ion atmosphere diameters that an ion travels in a 
high field. This has been done by Falkenhagen (7). 

If an i ion with a charge z,e = e,- moves with a velocity i>,- against a 
frictional resistance p,- under a field E, we have 

Vi = ZieE/pi = 0.1033 X 10-4 E'U/zi cm. per second 

where E' is the field in volts per centimeter and /,• is the mobility of the ion. 
If we now multiply i>» by 2©, we have the distance the ion travels in 2© 
sec. Furthermore, by dividing this distance by 1/K, we obtain the distance 
travelled in terms of the diameter of the ion atmosphere, namely, 

KSi = 0.207 X IQ^E'UQK/zi 

If we now consider a 1O-4 molar aqueous solution of potassium chloride, 
we have, for 180C, 

h = h = 65 ohms -1 cm.2 

© = (0.553/c') X 10-10 sec. 

1/K = (3.06/Vc"') X 10"8 cm. 

and for E' = 100 kilovolts per centimeter we obtain 

KSi = 24.4 

According to this example, then, the time during which a given ion is 
under the influence of an oppositely charged ion is only one twenty-fifth 
of the relaxation time, or, in other words, the time during which a given 
ion is in the neighborhood of other oppositely charged ions is so short that 
the distribution of the latter remains uninfluenced because of the relaxa­
tion effect. The above computation is, of course, only a rough approxima­
tion, since it involves assumptions including one such that the relaxation 
force is proportional to the field, an assumption which does not lead to a 
limiting effect. 

Let us now consider the dependency of the relaxation force upon the 
external field. We will simplify the problem by neglecting the Onsager 
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corrections for the influence of the Brownian movement, as well as the 
electrophoretic effect and its influence upon the relaxation force, and we 
will further assume that the ions of the electrolyte have equal charge and 
have the same mobility. Thus the application of this theory is limited 
as well as approximate. 

The equation of continuity yields 

-T-' = div ViUi = div (— grad n» — -^- 1 (2) 
dt \pi pi / 

where n< is the time average of the number of i ions per cubic centimeter, 
and K is the force acting upon the ions. Let us now change our variables 
so that the origin of the coordinate system is at the center of the i ion 
and moves with it, with a velocity v parallel to the X-axis, so that x = X — 
vt, y = Y, z = Z, t = t', 

dm __ _ dn< , drii 
ctt _ VHx W 

For the stationary case where dnt/dt' = 0, and substituting for K its 
value eiE — ei grad f, equation 2 becomes 

dm j . (kT , , met j ,\ / o N —v— = div<— grad n,- -\ grad \p> (3) 
dx [Pi Pi J 

The potential \p is satisfied by the Poisson equation, 

A further simplification of equation 3 may be effected by introducing for 
n< the value n< + vit where «< is the concentration for random distribution 
and Vi the perturbation caused by the acting forces. Thus 

where 

. . PiV dvi met . . ,.K 
Avi + kTB-x = -kTA4' ( 4 ) 

M> = - -j} H em 

For the simple case of an electrolyte having ions of equal charge and 
equal mobility, we have 

ei = — e2 = e, n\ = n2 = n, p\ = p2 = p 

Letting 

ne , 2 8jrne2 

P 1 = _ „ , = _ _ / , K = 
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and 

equation 4 becomes 

2 = JUL = — M JcT kT 

A/ + 2M f = A^ (5) 
ox 

where A^ = K2/. Equation 5 may be written in the two forms 

A / - V / + 2 M f = 0 (6) 
ox 

A ^ - « V + 2 M g ) = 0 (7) 

The distribution function / which satisfies equation 6 and the boundary 
condition is 

, = Q1 exp j-p.x) exp (-\//c2 + M2r) 
r 

where r is the radial distance from the central ion. To evaluate C, we 
let M = O so that 

tf)_ = C e x p (~* r ) (8) 

When M = O) the above equations lead to the original Debye-Huckel 
expression in which Ohm's law is valid. 

In order to obtain C" from equation 8 we recall that for a space charge 
density P, 

and 

Consequently, for (/)^_o: 

* - - £ / > 

/ = - - - (9) 

,,v _ 4TrP0 _ ,AiA0 _ , e exp (-«r) 

and 

C = e/D 

so that 

/ = ^- exp (-MX - V«2 + M2 r) (10) 
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This expression gives the charge density distribution as a function of 
x and r. What we are now interested in is the force, in the x-direction, 
due to this distribution. This force is obviously 

K* = iJII?™sedV 
DJJJr* 

With equations 9 and 10 we may reduce the above expression to 

„ eV fW2 f" exp (-nr cos 6 - v V + *2 r) . . a,a, ,„,. 
KB = — ?TK / I ——-— ^-—• sin 0 cos 6 ad dr (11) 

2D JLT/2J0 r 

and integrating, we obtain 
2 2 / 2 1 r i \ 2 2 

„ e K [W w — 1 , w + l\ e K 

2 

where w2 = 1 + —. 
Ai2 

In order to study the dependency of y upon MA, we will let u = 
{ix/y/c') X 1O-7. Plotting y against u, we obtain a curve through the 
origin which approaches y = 0.5 asymptotically as u —» » . This means 
that, for infinite field, i£B = —e2K?/2D. Since w is proportional to E, 
we see that a decrease in yfc1 acts in the same way as an increase in the 
external field. This is in agreement with the results shown graphically in 
figure 8. 

In order to obtain the conductance in any field, we apply the equation 
eE — pv + K8 = 0, so that 

x - ~v ~ -my (12) 

where 2ne2/p = X00. Since Falkenhagen found it inconvenient to proceed 
further in an explicit form, he tabulated the functions necessary for cal­
culating the change of conductance with field. 

By numerical calculation it may thus be shown that A00 is approached 
as a limit at high fields. At lower concentrations this limit is approached 
at lower fields. Other characteristics of the Wien effect follow from the 
theory: Increasing the temperature displaces the curves toward higher 
field strength; a similar shift occurs on decreasing the dielectric constant of 
the solvent.21 The theory accounts for the influence of valency on the 
field effect, in qualitative agreement with experiment. 

21 Care should be observed in selecting the system to be studied. Solutions in 
which ion association occurs should be avoided, since such solutions exhibit the 
second Wien effect. For example, Bauer's results in acetone seem to be in agree­
ment with the first Wien effect (potassium iodide, for example) and they may well 
be measurably influenced by ion association. In the case of lithium bromide in 
acetone the influence of ion association is evident. 
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As has already been pointed out, all these effects are dependent upon the 
relaxation time 0, which decreases with increasing concentration, with 
increasing temperature, and with decreasing dielectric constant. I t is 
worth while to mention that because of these characteristics of ®, the 
Wien effect is closely related to the Debye-Falkenhagen dispersion effect. 

3. The Falkenhagen-Fleischer theory for the frequency dependence of the 
Wien effect22 

Debye and Falkenhagen (5) developed their dispersion theory of elec­
trolytes at low fields by introducing the frequency into the Debye-Huckel-
Onsager theory which relates to stationary low fields. In a similar manner, 
Falkenhagen and Fleischer (8) introduced the frequency into the Falken­
hagen theory for stationary high fields as outlined above and thus de­
veloped a theory of electrolytes for non-stationary high fields. In so 
doing, equation 6 has the complex term K2(1 + t'w©) instead of just K2. 
This leads to a differential equation which Falkenhagen and Fleischer 
have solved, giving 

AA _ e K , , n\ 

where the symbols have the same significance as in the preceding theory. 
y', which is the real part of a certain function,23 y*, is a very complicated 
expression, which Falkenhagen and Fleischer have expressed in tabular 
instead of explicit form. Their table contains the real part of y* as a 
function of n\/DT/c' and co0. In figure 15 are shown curves of y', the 
real part of y*, plotted against «© with ix-\/DT/c' X 1O-9 as a parameter. 

Taking the qualitative nature of their theory into account, Falkenhagen 
and Fleischer conclude that their results are in good agreement with the 
experimental results of Bauer and Michels. However, the experimental 
material is so meager that a thoroughgoing comparison between theory 
and experiment is not now possible. It would seem of interest to study 
the frequency deviation of the Wien effect under conditions of field and 
frequency that correspond to the maximum in the y'-u® plot. 

4. The Wilson theory for binary electrolytes 

In formulating his theory Wilson (39) obtained complicated systems of 
differential equations which he was able to solve and which give a complete 

22 Falkenhagen (8) announces a future publication in which he will consider the 
theoretical treatment of the influence of high fields upon the dielectric constant of 
the solution. Experimental studies of this phenomenon have not been made as yet 
and will meet extreme experimental difficulties, at least for solutions of high con­
ductance. 

Since the writing of this review, this theory has been published by F. Frolich 
(Physik. Z. 40, 124 (1939)). 

43 Falkenhagen and Fleischer do not give the function y* in their publication. 
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account of the first Wien effect. The solution that Wilson obtained is 
valid for low-frequency conductance phenomena of binary electrolytes in 
any field. According to this theory the limiting conductance does not 
reach Ax, since only the relaxation force disappears completely, leaving a 
small contribution due to the electrophoretic effect. 

In attacking this problem Wilson proceeded in the familiar way by 
considering a solution containing per cubic centimeter n\, n2, . . . n, 
ions of species 1,2, . . . s with charges e%, e2, . . . ea E.S.TJ., and two elements 
of volume dTi and dF 2 located by a vector r drawn between them. Con­
sidering the time average concentrations of the j ion and i ion in the two 
elements of volume dFi and d"K2, respectively, it is possible to show24 that 

/ ; i ( r ) = n,-n,-i(r) = runui-i) = fn(-r) (14) 

where n,-,-(r) is the time average concentration of the i ions in dF 2 while a 
j ion is in dFi, and nij(-i) that of the j ions in dFi while an i ion is in 

FIG. 15. y' against «©, where the parameter X 10- 4, 16, 47, 109, 

and 1550 (from the bottom up, respectively) 

dl^- The equations of continuity, in terms of these distributions, are, 
for the steady state of the solution, 

9 / , ' , ( r ) = divx/,Y(-r)v i y(-r) + divs/fl(r)v*(r) 
(15) 

= CUVMT)[VH(I) - v,7(-r)] = 0 

8t 

Here v,-j(r) is the total velocity that the i ion has in the vicinity of a j ion 
and is given by 

v,-i(r) = oak, — uikT gv&di In /,;(r) - w.-e* grada ^i(O) - w<e,- grad2 ^,-(r) 

where k( is the applied force, p< = l/w; the frictional coefficient, —utkT 
grad2 ln/y,(r) the diffusion velocity, — e{ grad2 1̂-(O) the force due to the 

24 See references 22 and 25 for details. 
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ion's own atmosphere, and — e< grad2 ^,(r) the force due to the j ion and 
the latter's atmosphere. There is likewise a similar equation for v,-,•(—r). 
If these equations for v,3(—r) and v,,(r) are substituted into equations 15, 
the following equations of motion are obtained,25 

div/ji(r)[v,-<(r) - v,-,(-r)] = wi[k;.grad/,<(r)] - w3-[k,-grad/,;(r)] 

- njinleiwMiir) + e,-w,A«A,(-r)] - kT(ut + «y)A/yi(r) = O (16) 

If, further, it is assumed that the external field is acting in the direction 
of the positive z-axis, ki = Xei, k2 = Xe2, and bearing in mind that 
ei = — e2 = e and rii = n2 = n, the following equations are obtained from 
equation 16: 

n«e{A[*i(r) + * i ( - r ) ]} + 2kTAfn(t) = O (17) 

-n2e{A[^2(r) + * , ( - r ) ]} + 2kTAfn(r) = O (18) 

Xe(Wl + W2)
 d-^ - nae[uiAto(jc) - w2A^(-r)} 

ox 

+ fcr(Wl + w2)A/12(r) = O (19) 

-Ze(wi + w2)
 9 ^ - - n2e{uiA^(-i) - w2A^i(r)} 

ox 

+ fcT(w2 + «i)A/n(r) = O (20) 

As boundary conditions: For the flow, the vector field 

/y«(r)[v,<(r) - v,-,-(-r)] (21) 

must be without sources. For the ionic fields, Wilson gives the following: 

>Ai(r) - ei/Dr < » 1 
(22) 

i/-2(r) — e2/Dr < =o j 

* i ( » ) = *«(") = O (23) 

Equations 22 state that, since the space charge of the atmosphere is 
integrable, the potential i/-,(r) at the point r will differ from e,/Dr only by a 
finite amount. 

The Poisson equations may be expanded into the forms 

A^1 (r) = ^ e [ - / u ( r ) + / 1 2 ( r ) ] (24) 

25 The expansion is accomplished by noting that the k's are divergence-free and 
that the following simplifications have been made. The grad \fr(0) terms have been 
neglected and the/,-* terms in the grad i/-(r) terms have been replaced by n,n,-, since 
fa — nifij ~ eie,-. Both of these simplifications are permissible because the terms 
neglected are of the order e), while the other terms are of the order e,-. 
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A (̂r) = ^J[-/21(r)+/22(r)] (25) 

with similar equations with (— r). In order to obtain one of the two 
symmetry relations for the potential, one Poisson equation is subtracted 
from another; this yields 

AhMr) - H-T)] = ^ [/12(r) - /12(-r)] (26) 

AhMr) - U-r)} = ^ [-/»(r) + M - r ) ] (27) 

From equation 14 it is seen that 

A[^(r) - * , ( - r ) - Mr) + M~r)} = 0 

Since ^,(oc) = M"*) = 0, then 

Mr) - M-r) ~ Mr) + M~r) = 0 

or 

Mr) - M-r) = Mr) - M~r) = 2F(r) (28) 

where F(r) is the odd part of the potential, i.e., the part due to ions of 
unlike sign. 

Since the boundary conditions for the flow stated that the vector field of 
the flow is without sources, the source-free vector vanishes so that 

nHMr) + M-r)] - 2fcT/22(r) = Constant26 

Since/,<(») = n2, the Constant = —2kTn2. This gives, then, 

M r ) = M - r ) = n2 - ^ i [Mr) + fc(-r)] (29) 

M r ) = M - r ) = n* + - ^ l [Mr) + M~r)] (30) 

By means of the Poisson equations and these relations, the following 
equations are obtained: 

(A - *72)[^i(r) + M-r)} = ^ g [Mr) + M-T)] 

(A - «72)[^(r) + M-r)] = - g ? [Mr) + M - r ) ] 

" Found by writing equation 21 in its expanded forms. 
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These equations obviously lead to 

(A - K2/2)[<Ai(r) + iAi(-r) + MT) + M~T)} = 0 (31) 

From the boundary condition (22) it follows that 

*i(r) + M~r) + MT) + M-T) < * 
As Wilson pointed out, equation 31 has no solution other than zero, which 
is everywhere finite and free from singularities; thus 

MT) + M~T) + MT) + M-T) = 0 
or 

MT) + * i ( - r ) = -[MT) + M~T)] = 2r(r) (32) 

where r(r) is the even part of the potential. From equations 28 and 32 

MT) = -M-T) = r(r) + F(r) (33) 

* i ( - r ) = -*«(r) = T(r) - Y(i) (34) 

These equations describe the correct symmetry conditions of the ionic field 
for a binary electrolyte.27 

Denoting the even and odd parts of the function /u(r) by (?(r) and U(r), 
we have 

/«(r) = M-T) = G(T) + U(T) (35) 

M-T) = MT) = G(T) - U(T) (36) 

Using these relations and relations 33 and 34, equations 19 and 20 reduce to 

£ A T W - , « , > - ™ (37, 

ifW-im-gm (38, 
27 Joos and Blumentritt in their work assumed that the perturbation of the distri­

bution function,/' (where/ = /° + / ' ) is small compared with/". This assumption 
is permissible only for low fields, where Ohm's law is valid, and leads to 

Mr) + M - r ) = 0 
and 

Mr) - M - r ) = 0 

Blumentritt, by assuming that these expressions are valid at high fields, has limited 
her results in this way. Consequently her theory gives only the correct sign and 
trend of the potential effect. 
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Introducing the symmetry conditions 33 and 34 into 29 and 30, we obtain 

/n(r) = M r ) = n2 - ^ r(r) (39) 

When equations 33, 34, 39, 35, and 36 are combined with 24 and 25, we 
have 

(A - K
2/2)r(r) = ^ g G(r) (40) 

A7(r) = i g Ud) (41) 

From equations 38 and 41, 

(A - K
2 / 2 M r ) = - g ^ (42) 

and from equations 37 and 40 

to-MWW-£&r«--g!^ (43) 

By applying the operator (A — K2/2) to equation 38 and comparing with 
equation 42, we finally obtain 

A ( i-/)G(r). ( g ) * ? | « (44) 

Thus we have an equation in G(r) alone. Once this G(r) is known, we can 
obtain U(i), r (r) , and F(r) from the equations 43, 40, and 41. 

With the boundary condition for the flow, equation 21 becomes 

/ii(r)[vu(r) - v , i ( - r ) ] = Si 

/«(r)[v«(r) - v 1 2 ( - r ) ] = S2 

Expanding these and using equations 33, 34, 35, and 36, we obtain for the 
symmetrical and asymmetrical parts of the flow 

S, = ^ grad r(r) - grad G(r) -e~ex U(x) (45) 

S0 = ^ grad Y(T) - grad U(i) - g e,G(r) (46) 

where Si = S,- + S„<, S2 = S8- — Sa>, S8- = S,(wi + o>2), S0- = Ss(wi + W2), 
and ex is a unit vector. 



402 HARTLEY C. ECKSTROM AND CHRISTOPH SCHMELZER 

Equations 42, 43, 40, 41, 44, 45, 46, together with the ionic boundary 
conditions 

lim / grad„ r(r) dS = ~ 

lim f gradn F(r) dS = 0 
o-o Ja(s) 

where Q is the volume enclosed by the surface S, constitute a system of 
differential equations. On solving these equations we obtain the desired 
distribution and potential. 

Since the field is parallel to the z-axis, cylindrical coordinates (x, p, d) 
are more convenient to use because the angle variable 6 drops out. Then, 
by Fourier transforms, Wilson finally obtains 

/„<±r)-/„(=Fr)-?5J? 
Jo 

1 
V V — 4/i2a2 

{(X2. - a2)X0(XlP) - (\\ - a2)X0(X2P)} cos (ax) da 

- | x 0 ( X 3 p ) j s i n ( a z ) d a ] (47) 

^u(r) = \ J J" ^ _K'^tcf {(X? - a")X,(XlP) + (Xj - a2)X0(X2p) 

^ - X0 (X3 p) > cos (az) da 

± j [" ^ ^ , ^2 (Xo(X1P) + Xo(X2p) - 2X„(X3p)} sin (ax) d a ] (48) 

where i) = e/fcT, ^ = »jX, and X0(Xp) is a modified Bessel function of the 
second kind and zero order, and X = X(a) are functions of a alone.28 

«-+i('+V^) 

«--••iO-i/^?) 
x; - «• + 

X4 = a 
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These expressions will now be used in calculating the electrophoresis 
and the ionic field. 

To obtain the electrophoretic effect,29 the calculation is carried out by 
using the classical hydrodynamical equation of Stokes for the velocity of a 
body in a viscous medium, 

m curl curl v = — grad p + F 

div v = 0 

where 770 is the viscosity, v the vector velocity, p the pressure, and F the 
force density due to the action of the external field X upon the ion atmos­
phere. The problem is to solve equation 49. With Poisson's equation, 

Fx = - ~ A^ (50) 
4TT 

To solve equation 49 we find a vector a, continuous everywhere, together 
with its derivatives up to the third order, and satisfying the equation 

wV2(V2a) = F (51) 

Then 

v = —grad div A + V- VA = —curl curl a (52) 

and 

p = V2(div A) (53) 

Using equation 48 in equation 50, together with the above equations, 
the velocity of the central ion in the direction of the field axis is 

».(0, 0, tf) » - - ^ f - / ( * ) (54) 

where 

/(*) = 1 + -*—\-xy/TT*t +V2x 
4 V 2 x { 

- (1 + 2a;2) tan - 1 y/~2x + (1 + 2a;2) tan - 1 

Vl + x2 

+ 2a;2sinh~1a;J> (55) 

and x = /i/ K. In figure 16a f(x) is shown plotted as a function of x. 
This figure shows very clearly how the complicated expression, f(x), 

" See reference 22 and footnote 19 for a discussion. 
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lim varies with x, and that [™ f(x) = \/2 and 1^f(x) = 1. Consequently, 
if we let X = 0, we obtain the result of Onsager (22), whereas, for X = » , 

Ir. r. „\ MX 
vx(0, 0, e) = ---J=— 

0 V2T'?O 
i.e., the electrophoretic effect does not disappear at infinite field. 

fO) 1-2 

g(x) o-i • 

FIG. 16. The functions f(x) and g(x) plotted against x 

We obtain the added field acting on the ion in question due to the relaxa­
tion force, 

8E(i) = -grad *,(r) 

by using the ^,(r) from equation 48. This gives the ionic field at r, and 
since we desire the field at the ion itself, we must evaluate the field at 
r = 0; i.e., 

SE(O) = ex8X(0, 0, 6) = Km g r a d ^.( r ) 
X=P=O 

Performing the indicated operations we have 

5Z(O, 0,0) = ±e£g(x) 

where 

g(x) = -1-i-xVl + x* + tan" 

(56) 

2x3 
Vl+: 

+ \/lx - tan l \/2x\ (57) 

Since g(x) is another complicated expression of x, it is most convenient 
to show graphically the variation of g(x) with x. This has been done 
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in figure 16b, from which it is apparent ™J g(x) — (2 — A / 2 ) / 3 and 
x=0 

lym g(xj — Q This simply means that for zero external field the expres­
sion 56 reduces to the required finite value and for infinite field the ionic 
field vanishes. 

The final problem is to combine equations 54 and 56 in order to obtain 
the net velocity of the j ion in a field X. 

X e,co,- + Vx(O, 0, ew + —'^- eiUi I + Vx(O1 0, 6) 

Here the first term on the right side is the velocity caused by the external 
and ionic fields, and Vx(O, 0, 6) is that caused by the electrophoretic effect. 

The mobility of the ion in practical units is 

0> 
Ui = - ' 300 300X 

and since the conductance for infinite dilution A00,- = 9650Ou00,-, we have as 
the final equation 

A, = A50,- - j ^ £ * Axig(x) - (321.67) r ^ - / ( z ) (58) 
2DkI 6 V 2 rrio 

In order to show that this equation reduces to the quadratic form for very 
low fields, we expand the equation 

- ^ = ( l - ^g(X)) ±- - (643.34) ^ - ^ - - 1 
Aa_0 \ 2DkT ) A£„o 6 y/2 TTTJO A*_0 

for values of z2 < 1. Neglecting terms of xA and higher, we have30 

(59) 

AA 

AB„Q 
(0.0344) j ^ y ^ - + (0.0243) (643.34) ^ j * - 1 

2DkT AB»o 6 V 2 TIJ0
 A * - ° -

x2 (60) 

We may quantitatively test the Wilson theory by means of Wien's 
data for magnesium sulfate (35, 36). The AB=o — V c plot for magnesium 
sulfate is linear but does not have the theoretical slope, indicating a slight 
degree of incomplete dissociation. This manifests itself in such a way that 

in equation 59 ™ -— ^ 0. I t is therefore necessary to add a con-

stant to equation 59 which has such a value that for Z = 0 the curves pass 
through the origin. Equation 59, together with this constant, and equa-

30 The Joos-Blumentritt theory gives for binary electrolytes 0.0133 instead of 
0.0172 and 0.0973 instead of 0.0243. 
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tion 60 were used in the calculations. In figure 17 are shown the experi­
mental points as well as the curves computed according to Wilson's 
theory. In this computation the constants used for the high-field region 
are c = 0.37 X 1O-3, AB=o — 105.5, A05 = 114; and in the low-field region 
c= 1.22 X 1O-3, AB_o = 99.0, A00 = 114. In all the experimental work in 
Wien's laboratory the temperature was always about 180C, unless other­
wise specified. In our calculations we therefore assumed Z) = 81 and 
??o = 1.05 X 1O-2

 CG.S., corresponding to a temperature of 18°C. The 
deviations at high fields are due to the superimposition of the dissociation 
field effect, which is insignificant at the lower fields. Unfortunately, ac­
curate data are not available for other electrolytes, and it is therefore 
impossible to say how generally a similarly good agreement will be found 
in the case of other electrolytes. 

3 6 

A.. . 

i 

(OO ZOO 3 00 

IO 20 30 

KV/em. 

FIG. 17. Aqueous solutions of magnesium sulfate. • , high field; O, low field; 
, theoretical curves 

The theoretical equation (59) is extremely sensitive to the constants. 
I t should therefore be emphasized that, in further studies in this field, 
accurate values be recorded for concentration, conductance corrected for 
solvent conductance, and temperature. 

B. The theory of the dissociation field effect 

In an attempt to account for the results obtained by Wien and his 
coworkers for weak electrolytes, Onsager (23) made a detailed study of the 
mechanism of association and dissociation of ions. He assumed that 
these processes are governed by the laws of Brownian motion. The 
distinction between free ions and ion pairs is the same as that of Bjerrum 
(2), who adopted the convention that two ions at a distance r < q are 
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considered as an ion pair. The potential of the average force between two 
such ions, i and j , is then 

wjfW = ejBi/Dr for r < q (61) 

where q = e,e,-/2.D&T. For r > g, this potential becomes 

^-JiS (62) 

Onsager's considerations apply primarily to cases where the concentration 
of free ions is sufficiently small, so that 

Kq = -Kelei/2DkT« 1 (63) 

where 

K2 = 4ir(nie? + n2el)/DkT (64) 

and rii and n2 denote the concentration of free ions. 
When no external field is present, the total concentration of ion pairs 

equals 

va = va = m / w,;(r)4flT2 Ar (65) 
"a 

where 

nn = me-"""" (66) 

is the density of i ions in the neighborhood of j ions, and where a is the 
distance of closest approach of the two ions.31 It is assumed that the ions 
are rigid spherical point charges, the sum of whose radii is a. 

When an external electric field X is applied, equation 66 is no longer 
valid. In the presence of such a field no true equilibrium exists between 
the ions and ion pairs, and it is accordingly necessary to consider the 
kinetics of dissociation and recombination of ions by applying the equations 
of Brownian motion (22, 25). The distribution function which results 
and which is considered to be applicable is the same as that given by 
equation 14. Again we have for the stationary condition, 

div2 [/,,(r) {vn(-t) - v^W}] = 0 (67) 

where Vj,-(r) — Vj,-( — r), the mean relative velocity of the two ions at a 
distance r, is given by 

Vn(i) - Vij(-t) = WiIdX + ka(i) - fcrgradjln/^W] 

- Wy[e,X + kai-x) - kT gradi l n / < y ( - r ) ] (68) 
31 For a critical discussion of ion pairs and their distribution function, see Fuoss 

(Trans. Faraday Soc. 30, 967 (1934)). 
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Here k,-,(r) and kj,( —r) denote the average forces acting on the ion in 
question due to interactions with other ions. Assuming equation 63, the 
screening effect of the ion atmosphere is negligible so that 

k,'.-(r) = -grad 2 w,-,-(r) 
(69) 

k,-,(-r) = -g rad i w,,(r) 

where w,i(r) = efii/Dr. Equations 68 and 69 lead to 

/(r)v(r) = /(r)[v„-(r) - v«(-r ) ] 

= kT(Uj + U{) ( - g r a d / + / grad (^ + 2/3* j ) (70) 

where g = -e^^DkT > 0 and 

2/3 = 1 X(eiwi — e2«2) \/kT(ut + a>2) 

The frame of reference is such that the *-axis is parallel to the field X and 
Xe1 > 0 and Xe,- < 0. Therefore, equation 67 becomes 

div g rad / = grad/-grad (2/3* + -^J (71) 

Furthermore, equation 70 with the equation of continuity yields the net 
rate of entry of pairs of ions into the interior (U) of any closed surface (S) 
in the r space, namely, 

J0 g dfl = («,- + Ui)kT fa grad„ / - / grad„ (^ + 2/3«) J dS (72) 

where grad„ denotes the normal component of the gradient at S. 
If Bjerrum's picture correctly describes the phenomenon of ion associa­

tion, equation 71 must be solved with the boundary conditions 

/ = mm (r = co) (73) 

/(r)v(r) = 0 (r = a) 

and 

whence 

g rad r / = /(2/3 cos 6 - 2-jj for r = a (74) 

Since the boundary condition given by equation 74 is complicated, Onsager 
applied it under the simplifying assumption r = 0. 

The solution of equation 71 is the subject of another paper by Onsager 
(24), but instead of solving this equation to satisfy both conditions 73 and 
74, he proceeded to calculate separately the parts of / that correspond 
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individually to the processes of dissociation and recombination. To do 
this, he obtained the rate constants KA and A in the chemical kinetic 
equation 

5 ' = Arum - KAvv (75) 
at 

which is associated with the reversible reaction A+,B~ ^t A+ + B~. 
The evaluation of these kinetic constants is equivalent to that of Langevin 
(15). Under the assumptions made, complete dissociation is represented 
by random distribution, i.e., 

/(r) = nini (76) 

Accordingly, it follows from equations 72 and 76 that the rate of recombina­
tion is 

ArijUi = 8rqkT(uj + ojj)n,n< (77) 

whence for a binary electrolyte ei = — e%, 

A = ^ (ej«i + e U ) (78) 

It is now necessary to consider the case where the field X vanishes, in 
order to obtain that part of the distribution function which represents the 
associated ions. In connection with equation 62, Onsager points out that 
the factor e~" is due to the gradual screening off of the electric field of an 
ion by the ion atmosphere and that neglect of this factor would lead to an 
infinite total space charge. Taking into account assumption 63, it is 
possible to neglect this factor up to some distance, r', which fulfills the 
condition 

a « r' « 1/K (79) 

so that 

Wji(r) = e,e,-/Dr for r < r' 

Now, according to condition 65, 76, and 79, the part of the distribution 
function representing the associated ions is 

Sir) = n,n,(e2s/r - 1) = V]iK(0)(e2q,r - 1) (80) 

This equation is the only solution of equation 71 that satisfies the following 
set of boundary conditions: (1) f = 0 for r = °o ; (#) there is a source of 
the given yield at the origin; and (3) the flow from the origin through 
any space angle is finite. Onsager states, however, that the solution of 
equation 71 for the field X ^ 0 under these same boundary conditions 
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involves elaborate analysis, but that the unique result is expressed by the 
definite integral 

/(r> B) = 9- e~^r coa e+29/r f ^M(SPs)112 cos ^e -*"ds (81) 

where Jo[ 3 denotes the ordinary Bessel function of order zero. If r is 
small, the upper limit32 may be replaced by » to yield the result 

f(r, 8) ~geigrei0rc°°e (82) 

Onsager further reduces this expression by replacing e^
Taas6 by unity, 

stating that the error introduced thereby may be of the same order of 
magnitude as that caused by neglecting the hydrodynamic interaction of 
the ions. Comparing the resulting simplified expression with equation 80, 
where e2*/r » 1, it follows that 

Vii = g/K(0) (83) 

It is now necessary to evaluate the rate of dissociation by substituting 
the distribution 81 into the rate equation (72). If the integral in equa-

= / — / , only the integral — / contributes 
o Jo hq Jiq 

to the flow, as Onsager points out, so that for small r, 

-K(X)AvH = -8*«*r(«, + m)gJ-l!p£=S> 

Using equations 78 and 84, this reduces to 
K(X) J1(W-Pq) = F(h, 
K(Q) 2V=Pq 

(84) 

Here 

F^ = 1 + b + hrs + m + &o + Sob+--- (85) 

for small values of b, or 

F(h-) / ? 6 ^ ' " T1 3 _ _ J5 105 _ "1 , . 
W ~ V x(86)-8'4L 8(8^)1/2 128(86) 1024[(Sb)1'2]8 " ' " J W 

for large values of 6. Equation 84 gives the increase of the dissociation 
constant due to the field, where the parameter b is 

, 0 zioji + Z2«2 \X \e 
& = 2 ^ = Wl + W2

 S^2DVT 
31 The error thus caused is negligible if 

er >> 1 
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Before proceeding further, it may be well to point out that equation 84 
is an approximation which results on (1) assuming a — 0 for the boundary 
condition (74), and {2) obtaining equation 82 by replacing the upper 
limit in equation 81 by °o and setting e

2^rcoa0 = 1 in equation 82.33 

It may also be noted that the earlier equation (71) itself expresses the 
result of a simplified picture: (1) The hydrodynamic interaction of the 
ions is neglected, which may cause important errors in any solvent if the 
field is very high. (2) The shielding of the Coulomb forces due to the 
ion atmosphere has been neglected. 

Physically, equation 84 states that while the dissociation of ion pairs 
is increased by the field, the recombination of ions remains unaffected 
(see equation 77). Considering the case of binary electrolytes, it is seen 
that 

JSL = K = K0 FXb) (87) 
1 — a 

For small values of b, a good approximation is 

AX = A« = /1^\AK 1 - ^ 
A ao \ i — «o/ A.o & — <*o 

where the increase of conductance X is assumed proportional to the dis­
placement of the dissociation equilibrium. 

When the ions have the same charges, and the total number of ions is 
small compared to that of ion pairs, i.e., a « l , then 

It is of interest to point out that according to equation 89 the concentra­
tion of the electrolyte and the dimensions of the ions, as well as the equi­
librium constant, have no influence on the value of X/X*_o. In other 
words, for a given field this ratio depends only upon the charges on the 
ions, their mobility, the dielectric constant of the medium, and the tem­
perature. Considering the case of a 1:1 salt under the action of the 

31 See footnote 32. If equation 71 is assumed valid for all distances, r — o, and if 

<F - S 8 ( I - O VfT/s)2/<" 

oJ(i - o VWq)e 

is small, the boundary condition for small r is immaterial. Since the errors caused 
by these simplifying assumptions are governed by values of /3 and q, we must con­
sider the limits of these quantities. Since the intensities of the electrical field do 
not exceed 500 kilovolts per centimeter, /3 is limited to 0 < /3 < 107 cm.-1 However, 
since q depends on the valence type of the electrolyte and on the dielectric constant 
of the solvent, considerable error may appear in equation 84 in solvents of high 
dielectric constant like water and acetone. 
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extreme field of 500 kilovolts per centimeter at 25°C, the resulting value 
obtained is X/A*=O = 1.37 for water and 121 for benzene. This may 
account for the large effect observed by Gyemant. 

Onsager compares the consequences of this theory with available experi­
mental data by means of equations 87 and 89, and discusses the results at 
some length. In figure 18, reproduced from Onsager's paper, are shown 
curves based on the experimental values of Schiele (28) for acetic and 
chloroacetic acids in aqueous solution. As may be seen from the figure, 
there is excellent agreement between the theoretical curve as drawn and 
the experimental points, except at low fields where deviations appear. 
This discrepancy is due to various simplifications and assumptions intro­
duced in the course of developing the theory. 

Necessary data are lacking for solutions in solvents of quite low dielec-

IS 

10 

A l . . 

FIG. 18. O, acetic acid; • , chloroacetic acid; , theory 

trie constant. Fuoss and Mead34 have measured the conductance of solu­
tions of tetrabutylammonium picrate in diphenyl ether at 5O0C. up to 
potentials of 20 kilovolts per centimeter. With a solution having a con­
centration of 7.14 X 1O-3 moles per liter, they found that the conductance 
curve closely approximates the theoretical curve. They found, however, 
contrary to theory,36 that the slope of the curve is a function of concentra­
tion and at other concentrations the variation amounts to as much as 
40 per cent. 

" These experiments have been carried out in the Research Laboratories of the 
General Electric Company and are as yet unpublished. We are indebted to Dr. 
R. M. Fuoss for this information. 

35 Onsager recently stated that perhaps by a more detailed analysis his theory 
could be extended to account for this concentration effect. 
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IV. CONCLUSION 

The deviations from Ohm's law for electrolytic solutions, discovered by 
Wien and exhaustively investigated by him and his coworkers, may be 
accounted for by the present theory of Coulombic interaction between the 
ions. The agreement between experiment and the theory of Wilson is 
remarkably good, considering the complexity of the hydrodynamical equa­
tions involved in the theoretical treatment and the difficulties encountered 
in the experimental determinations. 

Although the present experimental material includes results covering 
most of the variable parameters involved, further studies of the depend­
ence of the general Wien effect upon viscosity, dielectric constant, and 
temperature are greatly needed. The influence of frequency in the high-
frequency ranges requires further and systematic investigation, particu­
larly in view of the recent theory of Falkenhagen and Fleischer. 

It is well established that, in solutions of weak electrolytes, the field 
effect is much larger than in solutions of strong (completely dissociated) 
electrolytes. The parallelism found between the field effect and the 
strength of the electrolyte leaves little room for doubt that the external 
field increases the number of free ions in the solution. Onsager's theory 
of the field effect in solutions of weak electrolytes accounts remarkably 
well for the observed experimental results in the few instances where the 
necessary data are available for making the comparison. Investigation of 
the field effect in solutions of incompletely dissociated electrolytes is much 
needed, particularly for solutions in solvents of low dielectric constant 
where the phenomenon is greatly simplified owing to the low concentra­
tion of free ions. 

The investigation of the influence of the electric field on the properties 
of electrolytic solutions, theoretical as well as experimental, has served 
not only to disclose many new and interesting phenomena, but also to 
place the theory of these solutions on a thoroughly secure foundation. 
The ions as well as the products of their interaction have taken on a degree 
of physical reality, the lack of which previously made it so difficult for 
many chemists to accept the ionic theory. 

Gratitude is expressed to Professors Charles A. Kraus and Lars Onsager, 
who have read the manuscript and have offered helpful suggestions. 
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